TABLE V.—PAPER-INSULATED AND LEAD-COVERED CABLES: CURRENT-CARRYING CAPACITY AND CORRESPONDING FALL IN PRESSURE.

		(Duandard	Aimeaie	u Copper.)	
Number and Diameter		Ma: (8	Approximate Total Length in Circuit (Lead			
(Inches) of Wires comprising Conductor.*	Nominal Area.	One Single Cable.	Two Single Cables.	One Con- centric or Twin Cable.	One Three- core Cable.	and Return) for 1-volt drop with Maximum permissible Current (Col. 4).
1.	2.	3,	4.	5.	6.	7.
	Sq. in.	Amps.	Amps.	Amps.	Amps.	Ft.
1/.036	0.001	5	4.1	4.1	4.1	30
1/.044	0.0015	7	$\overline{6} \cdot \overline{1}$	$\overline{6} \cdot \overline{1}$	6.1	30
$3' \cdot 029$	0.002	9	7.8	7.8	$\tilde{7}\cdot \bar{8}$	30
9/090	0.000	10	10.0	10.0	10.0	
3/1036	0.003	13	12.0	12.0	12.0	29
1/.004	0.003	14	12.9	12.9	12.9	29
7/.029	0.0045	20	18.2	18.0	$18 \cdot 0$	28
7/ ·03 6	0.007	31	$28 \cdot 0$	$25 \cdot 0$	$23 \cdot 0$	27
7/.044	0.01	47	42.0	35.0	31.5	27
7/.052	0.0145	63	$57 \cdot 0$	$45 \cdot 0$	$41 \cdot 0$	28
7/.064	0.0225	83	75.0	60.0	56.0	29
19/.044	0.03	97	87.0	71.0	66.0	35
19/.052	0.04	116	104.0	85.0	78.0	41
10/.064	0.06	150	125.0	114.0	101.0	10
10/.079	0.075	174	157.0	114.0	101.0	40
19/.012 19/.083	0.01	212	197.0 191.0	150.0 157.0	$117.0 \\ 142.0$	52
05/004	0.10	200		154.0		
37/1064	0.12	233	210.0	174.0	161.0	60
37/ 072	0.15	273	246.0	200.0	186.0	65
37/+083	0.2	329	296.0	242.0	$227 \cdot 0$	72
37/.093	0.25	381	343.0	280.0	$265 \cdot 0$	78
37/.103	0.3	428	$385 \cdot 0$	$322 \cdot 0$	$304 \cdot 0$	85
61/•093	0.4	516	$464 \cdot 0$	$394 \cdot 0$	<u> </u>	95
61/.103	0.5	600	540.0	457.0	·	100
91/.093	0.6	693	$624 \cdot 0$		_	105
91/103	0.75	820	738.0		<u> </u>	109
197/.002	0.85	905	815.0			116
127/-103	1.0	1 035	932.0			191
1 HI/ 100		1,000	· 004 0			· 141

(Standard Annealed Copper.)

* The current-carrying capacity of a conductor having wires of a number or diameter not specified in this table shall be taken to be proportionate to that of the cases specified.

(i) Cables laid together.	Multiply amps. for one cable by					
3 4	••	••	0·85			
(ii) Where cable is laid	 Multiply	amps.	in abo	ove col	umns	by
(a) Cleated to a wall	••		0.9			·
(c) On the solid system (c) Direct in dry earth	•••	•••	$1 \cdot 1$ $1 \cdot 2$		*	÷.
(d) Direct in wet earth	••	••	1.3			
(iii) The figures given in the	•• table ap	ply to	one a	single	cable.	two

(iii) The figures given in the table apply to one single cable, two single cables, and to concentric, twin, and three-core cables run singly.

(iv) The maximum permissible currents (subject to voltage-drop) for the various sizes of conductors up to 1 sq. in. in cross-sectional area are shown in columns 3, 4, 5, and 6 of the table, which allows for a rise in temperature of 50° F. for impregnated-paper cables. For sizes below 0.0145 sq. in. the table is based on a current density of 4,000 amperes per square inch.

(v) The table refers to situations where the temperature of the air does not exceed 80° F, and thus the normal maximum running temperature is 130° F. Impregnated-paper lead-covered cables for pressures not exceeding 660 volts should not be allowed to attain a permanent temperature higher than 176° F, and the figures therefore allow of a margin of 46° F.

(vi) Where the temperature of the air exceeds 80° F. the permissible current shall be reduced in accordance with the following reduction factors :---

Initial Air Temperature. Degrees F.			Amperes permissible to be multiplied by			
90	· • •	••		0.93		
100	••			0.85		
110	••	••	••	0.76		
120	•••	••	•••	0.65		
130	••	••	••	0.54		

(vii) The further limitation of the size of conductor by the permissible drop in voltage is dealt with in Regulation 43-21 hereof.

14-17-5 S 5