TABLE IV .- RUBBER-INSULATED CABLES: CURRENT-CARRYING CAPACITY AND CORRESPONDING FALL IN PRESSURE.

(Standard Annealed Copper.)

Number and Diameter		Maximum Current permissible (subject to Voltage-drop).				Approximate Total Length in Circuit (Lead	
(Inches) of Wires comprising Conductor.*	Nominal Area.	One Single Cable.	Two Single Cables.	One Concentric or Twin Cable.	One Three- core Cable.	and Return) for 1-volt drop with Maximum permissible Current (Col. 4)	
1,	2.	3.	4.	5.	6.	7.	
$\frac{1/\cdot 036}{1/\cdot 044}$	Sq. in. 0·001 0·0015 0·002	Amps. 5 7 9	Amps. 4·1 6·1 7·8	Amps. 4·1 6·1 7·8	Amps. 4·1 6·1 7·8	Ft. 30 30 30	
$3/\cdot 029$ $3/\cdot 036$ $1/\cdot 064$	0.003	13 14	$\begin{array}{c} 12 \cdot 0 \\ 12 \cdot 9 \end{array}$	12·0 12·9	$12 \cdot 0 \\ 12 \cdot 9$	29 29	
$7/\cdot 029$ $7/\cdot 036$	0.0045	20 27	18·2 24·0	$\begin{array}{c c} 17.5 \\ 22.0 \end{array}$	16·0 19·5	28	
7/.044 7/.052	0·01 0·0145	34 41	$\begin{array}{c} \mathbf{31 \cdot 0} \\ \mathbf{37 \cdot 0} \end{array}$	26·0 31·0	$23 \cdot 3$ $27 \cdot 0$	39 45	
$7/\cdot 064$ $19/\cdot 044$ $19/\cdot 052$	$0.0225 \\ 0.03 \\ 0.04$	51 59 71	$ \begin{array}{r} 46 \cdot 0 \\ 53 \cdot 0 \\ 64 \cdot 0 \end{array} $	$ \begin{array}{r} 38 \cdot 5 \\ 45 \cdot 0 \\ 53 \cdot 0 \end{array} $	$33 \cdot 0 \\ 39 \cdot 0 \\ 47 \cdot 0$	55 61 71	
$19/\cdot 064$ $19/\cdot 072$	0·06 0·075	92 108	83·0 97·0	69·0 80·0	$61 \cdot 0 \\ 71 \cdot 0$	83 90	
$19/\cdot 083$	0.1	131	118.0	96.0	87.0	98	
$37/\cdot 064$ $37/\cdot 072$ $37/\cdot 083$	$egin{array}{c} 0 \cdot 12 \\ 0 \cdot 15 \\ 0 \cdot 2 \end{array}$	144 169 204	$130 \cdot 0$ $152 \cdot 0$ $184 \cdot 0$	$\begin{array}{c c} 108 \cdot 0 \\ 125 \cdot 0 \\ 150 \cdot 0 \end{array}$	99·0 115·0 140·0	103 112 123	
$37/\cdot 093 \ 37/\cdot 103 \ 61/\cdot 093$	$egin{array}{c} 0 \cdot 25 \\ 0 \cdot 3 \\ 0 \cdot 4 \\ \end{array}$	238 267 320	$214 \cdot 0 \\ 240 \cdot 0 \\ 288 \cdot 0$	$\begin{array}{ c c c }\hline 176 \cdot 0 \\ 200 \cdot 0 \\ 244 \cdot 0 \\ \hline \end{array}$	165·0 —	132 145 162	
$61/\cdot 103$ $91/\cdot 093$ $91/\cdot 103$	0·5 0·6 0·75	369 427 512	$332 \cdot 0 \\ 384 \cdot 0 \\ 461 \cdot 0$	280.0		172 181 185	
$127/\cdot 093$ $127/\cdot 103$	0·85 1·0	569 661	512·0 595·0	= 2		190 200	

^{*}The current-carrying capacity of a conductor having wires of a number or diameter not specified in this table shall be taken to be proportionate to that of the cases specified.

(i) Cables laid together.		Multiply amps. for one cable by			
3 .		• ••		0.85	
4 .		••		0.80	
(ii) Where cable is	laid	Multiply	amps.	in abo v e	columns by
(a) In a due	t underground	ı		1.1	

- (b) On the solid system
 (c) Direct in dry earth
 (d) Direct in wet earth $\begin{array}{c} 1 \cdot 2 \\ 1 \cdot 3 \end{array}$
- .. (e) Direct under water 1.5
- (iii) The figures given in the table apply to one single cable, two single cables run in iron conduits or in wood casing, and to single cables sheathed with tough rubber compound, and to concentric, twin, and three-core cables of any finish, run singly.
- (iv) The maximum permissible currents (subject to voltage-drop) for the various sizes of conductors up to 1 sq. in. in cross-sectional area are shown in columns 3, 4, 5, and 6 of the table, which allow for a rise in temperature of 20° F. for rubber-insulated cables. For sizes below 0.007 sq. in. the table is based on a current density of 4,000 amperes per square inch.
- (v) The table refers to situations where the temperature of the air does not exceed 80° F., and thus the normal maximum running temperature is 100° F. Rubber-insulated cables should not be allowed to attain a temperature higher than 120° F. for long periods, or 130° F. for a short period. The figures, therefore, in the latter case allow of a margin of 30° F.
- (vi) Where the temperature of the air exceeds 80° F. the permissible current shall be reduced in accordance with the following reduction factors :-

tial Air Temperature. Degrees F.				Amperes permissible to be multiplied by		
	90			••	0.87	
	100				0.71	- 1
	110	• •			0.50	

(vii) The further limitation of the size of conductor by the permissible drop in voltage is dealt with in Regulation 43-21 hereof.