Required-True amplitude, and error of the compass; and, supposing the variation to be $22^{\circ} 30^{\prime} \mathrm{W}$., required the deviation of the compass for the direction of the ship's head.
2. Required the true course and distance from B to C by calculation on Mercator's principle ; also the compass course, assuming the variation to be $10^{\circ} \mathrm{E}$., and the deviation of your compass $17^{\circ} \mathrm{W}$. : Lat. of $\mathrm{B}, 36^{\circ} 22^{\prime} \mathrm{S}$. ; long. $175^{\circ} 33^{\prime} \mathrm{E}$. Lat. of C, $48^{\circ} 24^{\prime} \mathrm{N}$. ; long. $124^{\circ} 46^{\prime} \mathrm{W}$.
3. On 31st March, 1925 , in long. $140^{\circ} 20^{\prime} \mathrm{W}$., when a chronometer (corrected) indicated mean time at Greenwich 12 h .24 m .20 s. , the observed altitude of the Pole Star, out of the meridian, was $49^{\circ} 30^{\prime}$, height of eye 21 ft .

Required-The latitude.
4. On 25th August, 1925 , at about 03 h .00 m . at ship, in lat. by account $51^{\circ} 40^{\prime} \mathrm{N}$. , long. by account $150^{\circ} 15^{\prime} \mathrm{W}$., when a chronometer showed 13 h .06 m .52 s ., which was fast for mean time at Greenwich, 2nd July, 1925, $10 \mathrm{~m} .33 \mathrm{~s} .$, and losing 1.5 s. daily, the observed altitude of the star α Cephei (Alderamin) was $57^{\circ} 45^{\prime}$ west of meridian, and the observed altitude of the star Tauri (Nath) taken at the same time was $39^{\circ} 04^{\prime}$ east of meridian, height of eye 22 ft .

Required-The position of the ship and the true bearing of the stars.

2. General Mathematical Paper.

Time allowed 3 hours.

1. On 28th May, 1925 , in lat. $12^{\circ} 15^{\prime} \mathrm{N}$., long. $112^{\circ} 20^{\prime} \mathrm{W}$., when a chronometer, correct for mean time at Greenwich, indicated $15 \mathrm{~h} .22 \mathrm{~m} .19 \cdot 6 \mathrm{~s}$., find the sun's true altitude and azimuth.
2. Find a value for the angle A which will satisfy the following equation :-

$$
\operatorname{cosec}^{2} \mathrm{~A}+\frac{1}{\sin \mathrm{~A}}+\frac{\sqrt{1+\tan ^{2} \mathrm{~A}}}{\tan \mathrm{~A}}=19
$$

3. To an observer in the same horizontal plane as the base of a perpendicular cliff 250 ft . high, a flagstaff 50 ft . high on the top of the cliff subtended the same angle as that subtended by an object 10 ft . high at the base of the cliff.

Find the distance of the observer from the cliff.
4. Draw a figure and prove that

$$
\tan A=\frac{\sin 2 A}{2 \cos ^{2} A}
$$

5. Prove that if two straight lines cut one another, the vertically opposite angles are equal.
6. Find the area of a quadrilateral inscribed in a circle, the sides of the quadrilateral being $10,8,9$, and 7 ft . respectively.

3. Magnetism.

Time allowed 2 hours.

1. Assuming coefficient B to be $-6^{\circ} 30^{\prime}$, and coefficient C to be $-10^{\circ} 30^{\prime}$:

Required-The direction of the ship's head whilst building, assuming that B and C resulted altogether from permanent magnetism.
2. The deviations observed with ship's head by compass being as follows, compute the value of the coefficients A, B, C, D, and E , and from them find the deviation for ship's head by compass S. $31^{\circ} \mathrm{W}$.:-
At North, deviation $16^{\circ} 00^{\prime}$ W. At South, deviation $16^{\circ} 00^{\prime}$ E. , N.E., ", $1^{\circ} 34^{\prime}$ W. ,, S.W., ", $12^{\circ} 34^{\prime}$ E. "East, ", $6^{\circ} 00^{\prime}$ E. "West. " $6^{\circ} 00^{\prime}$ W. ", S.E., ", $10^{\circ} 04^{\prime}$ E. ", N.W., ", $21^{\circ} 04^{\prime}$ W.
3. On 6th October, 1925, at 05 h .20 m . apparent time at ship, in lat. $30^{\circ} 30^{\prime}$ N., long. $135^{\circ} 27^{\prime}$ W., the star a Hydrae (Alphard), east of meridian, bore by compass S. $79^{\circ} 30^{\prime} \mathrm{E}$.

Compute the true azimuth and thence the deviation of the compass, assuming the variation to be $14^{\circ} 10^{\prime} \mathrm{E}$.
4. With the ship's head N.E. by N. by compass, heeling to port 6°, the heeling-error was found to be $7^{\circ} 00^{\prime}$ easterly.

Required-The probable heeling-error with ship's head S. by E., by the same compass, and heeling 4° to starboard.

